CALCULATIONS POLICY

Introduction

It is our belief that at LGS Stoneygate pupils gain a deep, long term conceptual understanding of calculation in every concept that is secure and adaptable before moving onto the next. Children are to have experiences that will equip them with skills to be able to calculate efficiently and confidently throughout their lives and fully understand each interlinked concept.

This policy lays out the expectations for both mental and written calculations for the 4 number operations and has been created to support the teaching of a mastery approach to mathematics. This is underpinned by the use of models and images that support conceptual understanding and this policy promotes a range of representations to be used across the primary years. Mathematical understanding is developed through use of representations that are first of all concrete (e.g. Dienes apparatus, Numicon and place value counters), and then pictorial (e.g. bar models) to then facilitate abstract working (e.g. standard written methods).This policy is a guide through an appropriate progression of representations and if at any point a pupil is struggling with the abstract, they should revert to familiar pictorial and/or concrete materials/representations as appropriate

All teachers have access to the schemes of work from the White Rose Maths Hub and other supporting resources. Where appropriate, staff are encouraged to base their planning around these recommended modules. However, it should be emphasised that all planning should take account of the requirements of the pupils in terms of where they are in their learning and how they can achieve successful outcomes. Teachers are responsible for making these judgements.

The White Rose Maths schemes of work provide sequential programmes of study that are underpinned by promoting fluency in number. They emphasise that all pupils must have a thorough grounding in the four basic rules of number before progressing on to the next level. This complete understanding gives pupils more confidence in dealing with number activities and in turn, leads to mastery of the four operations.

Whilst the calculation policy guidance document is separated into year group phases, these are intended to be used only as a guide and it is the teachers' professional judgement as to when the pupils move on to the next phase.

Intent

The main aims of this policy are in line with the new National curriculum 2014 and aim to ensure that all children:

- become fluent in the fundamentals of mathematics, through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions. Pupils should make connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems.
- have a conceptual understanding of methods rather than a set of memorised procedures.
- use mathematical vocabulary correctly to communicate and share mathematical thinking.
- develop their relational understanding of new concepts, making connections through a CPA approach.
- demonstrate procedural and conceptual fluency in mental and written calculations from EYFS to KS2 and develop a depth of understanding. Confidently apply the appropriate method to any given context, be it familiar or unfamiliar, in maths lessons and across the curriculum.

Representations

Pupils will have the opportunity to manipulate a wide variety of models and images and resources to choose the best representation for each calculation.

Representations are vitally important in developing conceptual understanding and supporting children's visualisation of the maths. Different concepts can be represented using the same resource/representation depending on the child's age and stage of mathematical development.

These will include Numicon, number lines, number fans, bead strings, counters, counting objects, cubes, Diennes, Cuisenaire rods, multilink, unifix, place value counters and cards etc.

The Number Line

"Developing a number line is one cif the strongest and most useful mental images in helping us to undertake mental calculations." Koshy 1999

In the children's mathematical development, the school will encourage the use ofthe number line as a model and image to support mathematical understanding.

Mental images of number lines support place value and the development of efficient calculation methods, which consequently underpin the use of written calculation methods as stipulated by the NC documentation.

The number line is beneficial in its use as it will:

- Develops a child's mental imagery and spatial understanding of number
- Strongly develops sense/relationships of numbers
- Provides a progressive and consistent method of recording calculations
- Underpins children's acquisition of basic facts
- Allows a child to demonstrate a range of calculation strategies
- Enables more efficient methods to be developed

The Four Operations

All four calculations possess very strong links to each other. The basic ideas of addition and subtraction can be used to describe, estimate and calculate the more complex concepts of multiplication and division.

For these reasons it is vitally important that addition and subtraction and multiplication and division are taught alongside each other for the children to make links.

It is vital that all children have a conceptual and deep understanding of the mathematics and that no 'tricks' are taught as short cuts which can cause misconceptions to be embedded. For example, adding a zero when multiplying by ten does not support an understanding of place value.

Vocabulary

Communication of mathematical thinking is a vital skill. Children should be encouraged to verbalise their thinking with correct vocabulary using reasoning skills and sentence stems. For example, the term 'sum' will only be used to refer to an addition calculation

Bar Model

Bar Method - Problem Solving Approaches
The Bar method is a visual representation of a word problem. It allows the children to visualise the structure of the problem making it easierto see which parts of the problem are known and which are unknown. It is not a calculation tool. Once the problem is visualised then the appropriate number operations can be selected to solve it.

This also follows the Concrete - Pictorial -Abstract (CPA) model of conceptual understanding.

Part-whole model for addition and subtraction.

There are 5 apples and 6 oranges. How many pieces offruit altogether?

The bar method can also be used to help solve problems relating to multiplication, division, fractions, ratio and proportion. Through representing each part with bars, children can find the parts unknown and solve the problem. In each case, children should start with the concrete model before moving onto a pictorial representation and then finally by using an abstract representation in the form of a bar, or bars.

Progression of the calculations

The progression of the calculations in this policy builds up in small steps. They are not year group dependent but dependent on the stage of learning of the individual or group of learners.

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Combining two narts tn make a wholo luco nthor
combining two parts to make a whole (use other
resources too e.g. eggs, shells, teddy bears, cars).
Counting on using number lines using cubes or Numicon.

\begin{tabular}{|c|c|c|}
\hline Regrouping to make 10; using ten frames and counters/cubes or using Numicon. \& Children to draw the ten frame and counters/cubes. \& Children to develop an understanding of equality e.g.
$$
\begin{aligned}
& 6+\square=11 \\
& 6+5=5+\square \\
& 6+5=\square+4
\end{aligned}
$$

\hline TO+ 0 using base 10. Continue to develop understanding of partitioning and place value.
$$
41+8
$$ \& Children to represent the base 10 e.g. lines for tens and dot/crosses for ones. \& $41+8$
$$
\begin{aligned}
& 1+8=9 \\
& 40+9=49
\end{aligned}
$$

$$
-4: \frac{: 4}{?} \frac{?}{5}
$$

\hline TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$ \& Chidlren to represent the base 10 in a place value chart. \& Looking for ways to make 10 .

\hline
\end{tabular}

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
(ten frames, Numicon, cubes and other items such as beanbags could be used). 4- 3=1 Counting back (using number lines or number tracks) children start with 6 and count back 2. $6-2=4$	Ĉhildren to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. - ma 0 Children to represent what they see pictorially e.g.	4-3= Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5 .

Making 10 using ten frames.

14-5

Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.

- 00000000
 00000\{;
 ㄴ.

Children to present the ten frame pictorially and discuss what they did to make 10.

Children to represent the base 10 pictorially.

Find the difference between 8 and 5 .
$8-5$, the difference is
Children to explore why
$9-6=8-5=7-4$ have the same difference.

Children to show how they can make 10 by partitioning the subtrahend.

$14-5=9$
 $4 \quad 1$

14-4=10
$10-1=9$
Column method or children could count back 7 .

4- 8
-
7
$+\quad 1$

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=\mathbf{2} \times 5 \\ & \mathbf{5} \times \mathbf{2}=\mathbf{1 0} \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15 -mm!ilB) 11111	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 11 . \\ 105 \\ 10 \times 4=40 \\ 5 . \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used
Formal column method with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding. $\begin{array}{cc} 3 \times 23 & 3 \times 20=60 \\ \wedge & 3 \times 3=9 \\ 20 \quad 3 & 60+9=69 \end{array}$ $\begin{array}{r} 23 \\ \times \quad 3 \\ \times \quad 69 \end{array}$

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Reneated ornu unina/ronoatad addition Repeated grouping/repeated addition 3x4 $4+4+4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\overline{3} \times \overline{4}=\overline{12}$ $4+4+4=12$
Number lines to show repeated groups3×4 \square Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.: 	Abstract number line showing three jumps of four. $3 \times 4=12$

Calculation policy: Division

Key language: share, group, divide, divided by, half

	בYFS/Year 1	Year 2	Year 3		Year 5 Year 6
	inn whirhnais nna mn Sayingwhichnoisonemore Combining two partsto make whole Introducepart whole model. Starting atthe biggernumber and counting on- using cubes Regrouping to make 10using ten frame.	AAddring thrêê sitinglè digits. Use of base 10 to ${ }^{C}$ 'ombine two numbers. Column method no regrouping	Column methodregrouping. Using place value counters (up to 3 igits).	Column methodregrouping. (up to 4 digits)	C liumn methodreg ping!'Column method(with morethan4dilgits) regrouping. Decimals withthe same Albstract methods. amount of decimal places. IDecimals with different larmounts of decimal Use of place value countersIPlaces. for addingdecimals.
	Taking away using objects, drawing and crossing out. Taking away ones Countina back Find the difference Introducepartwholemodel Make 10 using the ten frame	!Counting bac:k Find the difference Part whole model Make 10 !Use of base 10	Column.method with regrouping. (up to 3 digits)	Column.method with regrouping. (up to 4 digits)	Column method with !Column method with regrouping (with regrouping. more than 4 digits) [Decimals with different Decimals with the armounts of decimal same amount of places. decimal places.

